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The precession equations (u, c, ZL’ correspond to a, b, y) are 

ku’ + Hg,v’ + Hg,w’ = 0, 

kv’ - Hg,u’ + Hg3w’ = 0, 

ku?’ - Hg,u’ - Hg,v’ == 0 

and for k # 0 and p = H-l # 0 have the unique solution 

(12) 

16 = a,, 2, = fJo, w = y. (13) 

If we divide Eqs. (11) by H, introduce the small parameter p_ = H-l, integrate them, 
and retain only the principal terms in the general solution, then we have 

a = co + g&, B = PO - .@, Y = YO i- glE 

where 
E= g3~'-gaPo'+glTo' 

k(g13 + gas + g3y (1 - e-9 

This solution differs from solution (13) by terms nondepending on the small parameter 
p = H-* ; therefore, the passage from the full equations (11) to the precession equations 

(12) is inadmissible (in the example given det G = 0). 
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The description of invariants generated in systems of ordinary equations by home- 
omorphisms of a neighborhood of a singular point is connected both with stability 
problems [l, 21 as well as with the broader problems of the topological, analyti- 
cal (or formal) classification of such systems [ 3, 41. If the eigenvalues of the 
system’s linear part are related by only one resonance relation, a reduction to 
normal form [S] enables us to extend the results obtained in [6] to invariants of 
an nth-order system n]. Namely, we have shown that the group of all analytic 
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homeomorphisms of a neighborhood of a singular point generates in the equations’ 
coefficient space nh invariant sets depending upon the first 2 qh + 1 terms of 
the expansion of the right-hand sides (q is the order of the resonance, h is the 

codimension of the system’s degeneracy). Besides these the group can have only 
singular invariant sets (depending on all the system’s coefficients). 

1. Formulation of re8ult8. We examine nth-order autonomous systems 

* = f (x)7 f (0) = 0 (1.1) 
Here f (2) is a vector-valued functions analytic in the neighborhood of the point z= 0. 
The eigenvalues pi of the linear part are related by the single resonance relation 

hlnl + . . . + Annn = 0 (1.2) 

There exists a unique formal power series 

u = uq + up+1 + . . .) uq = xp1 . . . xzn (1.3) 

satisfying the conditions : 
1) resonance terms are absent in the difference U - u4 ; 

2) Lu EE ;I: fi (x) -$ = gh+,uy + gh+2uhq+2 t_ . . . , &hl# 0 
i=l 1 

The number h > 1 is called the codimension of the degeneracy of system (1.1). The 

sign of the number gh+r determines the stability of the point x = 0 in the critical 

cases of one zero root or of a pair of pure imaginary roots. 
The group G of all analytic homeomorphisms of a neighborhood of point x = 0 

generates a system of invariant sets in the space of coefficients of the expansion of f(r). 

Let PS be the number of those of them which depend only on terms of order no higher 
than s in the expansion of f (LX) . The number pS does not decrease as s grows. How- 
ever, the following statement is valid. 

Theorem. The number pSO = max ps of invariant sets depending only of a finite 

segment of f (z) is finite S<CC 

pSO = nh 

while the maximum order sO of this segment is determined by the formula 

so = 2qh + 1 

These exhaust all invariant sets of formal transformations. Besides them the analytic 
group G can have only singular invariant sets (depending on all coefficients of the ex- 
pansion of f (z)) responsible for the convergence of the transformations. 

2. Proof of the theorem. We do not detail the presentation of the stages in 
the proof because they are analogous to those in [6]. For an arbitrary power series 

g k = XC~~!..h.nxl k, . . . z,,‘n and for the operator 2 = S E,a / 8~~ we set 

2.1. Since a formal transformation of any analytic system to a normal form always 
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exists [5]. the problem is equivalent to the classification of normal forms relative to the 
group G of transformations preserving them. For an arbitrary element of Z of the cor- 
responding algebra [L, 21 = 0. In particular [,!,, Z]v G [Lo, Z,j] m-X 0. Hence 

[L,. Z,“] = - 2 [La, ;/;,;“I 
1 tkl ‘-1 

Since 

Z,‘ = 0 follows from 2,” = . . . = Z,“_, = 0 when v f 0 . Therefore, a normal 

form is preserved only by transformations with operators of the form Z = Z”. 

2. 2. Series (1.3) is determined by the conditions U’ = u,,, (k)” m= 0 for all 
v + 0. Under the action of the normalizing transformation L = z’ (1 t- (1) (x’)), 

0 ((j ) = 0 , the series ZL and the operator L are transformed, respectively, to u’ and 
to the operator 

L” L1 + &,,+t -I-- . . . f- L;(,n+1,+1 + . . . 

in the normal form. Here LU = L’u’. We obtain 

(Lrc)“ z (LOU’)V = LO[“V = (J 

It is easy to find n’ = u”, where in the new variables U” = u,, f . . . . Further, 

LOU’ zzz (L”u’)” = (Lu)” = gh+&!+l j- . . . I.XA.X0 = gh,lU;+1 -I- ..1 

Hence we see that the numbers h and g,,+r are preserved under a normalizing transfor- 

mation. Furthermore, 
m<h (2.1) 

LOuq = Li(h+& + . . . = gh+lU;+l + 1.. (2.2) 

2.3. The operators we encounter subsequently form a series composed of operators 

of the form 

7 Jq:r+l = up ? a, 
( 

',I / ,1~1')*.1 + . . . -I- a,,,+) = Uq'"Z,(a;J) (2.3) 

71 

If Z, (c+) u,? # 0, then Z (ai,) uq = puclr 6 = c+,,n, + . . . + c+,*n,, and 
the expansion 

Z, (U;‘) ‘= Z,(ai,') + % ', 

holds. Consider n linearly independent operators 

Xl, z, (4, . . ., z (an-,> (Z, (a!J % = 0) (2.4) 

Any operator of form (2.3) can be written as a linear combination of them 

Z ‘<i”+l = UC, :” (BOX, + lm (al) + . * * + Pn-Jl (a,,-,)) 
Every operator ZcG, - Z,,,,,, + Z, (i*+lJ+l f . . . satisfies the identity 

tL, ZP,l = 1-k Zl;q+1+ [L, zl;(p+l)+l+ -** 
for some positive integer p. If the operators ZtI(,,.+r)+l, Z~~(~+o)+r, . . are chosen such 
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that the number p is maximal for the specified Zap+r , the operator 2~~) is said to be 
maximal and a positive integer z = q (p - p) is associated to it. The next prob- 

lem is to compute the numbers r for all maximal operators whose formal expansions 

start with operators (2.4) multiplied by uqk, i_r = 0, 1, . . . For operators Zr (ah) 

we trivially obtain IL, Z,(ak)] = 0, and,hence, z = ,x. 

2.4. Consider the operator X = X, + Xi+1 + X2*+1 f . . .. We have 

IL, Xlkptl = 6 k < m 

t-b Xl ,np+l = IL, xRqtll + [Gq+l, XII = - mqG,+1 

Conwu$ntly, [L, Xl = - mqLOm,+I + . . . independently of the choice of the ope- 

rators X,kUtl~ k > 1, so that z = qm for the operator X . For operators of the form 

Xt,, - u,,PX1 + . . . we have t = qm. In fact, independently of the choice of 

x; (P.+r)+rt_ . * * ’ 
IL, X0,] = IL&+,, u,ILX,l -I- . . . = - mqu,pL,,,,a, + . . . 

2.5. Let us compute r for operators of the form 

ZcILj = u,!* 
( 

atzr -$-- + 
1 

. ..+a.,l;,$J-- 
n ) 

. . . . CL,?Zr ( T . . . + c&n,,, = 0 

We denote 

We obtain 

L = ‘PI (u) x1 d / dz, + . . . + (Pn (24) s,a / ax,, 

Q,k (U) = hk + akrn ZP + . . . 

(al/q + . . . + %l% = 0, 1 < h by virtue of (2.2) 

Z[,, = $1 (U) z,d / ds, + . . . + q& (u) &la /d&L 

qlh (u) = a&L~ + . . . 

6-L 5) 

k 

Let Q (f) denote the lowest power appearing 

(in u). From equality (2.5) it follows that 

in the expansion of f in a power series 

In fact, 

6 (MD,) _’ p + 2h - m for I_L # m 

o (cp) = h, Q (cp’) = h - 1, Q (@,J a p + h 

There exists k such that o (cp~#~’ + mk) = h + p - 1. Further, 

Hence, by virtue of the condition i_& # m?, 
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Consequently, o (u@k) < /J + 21% - m. 
Let 4 = Cul*+h-m + . . . . In order to obtain G (~a>,) = p -j- 2h - m it is 

necessary that the equalities ‘I&; - rp?& = 0, k = 1, . . ., n be fulfilled up to 
order 2h - m - 1 inclusive. In particular, the conditions 

mcokm - @+z, = 0 (b = alhnl + . . . 3 a,,it%) 

must be fulfilled. In other words, the operator for which Z = Q (2h - m) is determined 
uniquely. For other operators, being linearly independent with the ones indicated, the 
equalities tlkm = kakm cannot be fulfilled for any a whatsoever. Consequently, for 

these operators mc~k~ - pba,, # 0 and z = qla. 
The functions @,of maximal power p + Zh - m areobtained in the following way. 

We define $k by the conditions 

$+nipi’ - 1c’i’ = (,n - E”) &:*-‘+p, {6:~-“;p,i’ - X#&’ = 0, k>,z 

Then u’“-“cp’ - 4’ = (m - p) tPrrt-%p, whence 4 = r_~*-‘~cp, Therefore, 

ljxp&’ - (fl& -- ‘p (zP”Vp$ - qk’) = ?j,i (n - p) UP-"-l@ 

i.e. 5 (I&~ - cpsiz'l = El + %-- m - 1, k > 1. Thus,when !_k f- m we have 
Z = gh for all operators .&,) = U$ zr f - . . except one {which we denote l’(!A$ . 

For the operator Y(P) we have z = q (‘82 - m). 

2.6. Consider the case ~1 = m. 

2.6.1. If we choose qkf = cpi, h_ > 1, then @, = 0, k > 1, so that % = 3~) 

for the corresponding operator ( YcrnJ ) . 
2.6.2. If qkf # vk’, then the first terms of the expansion of 9; and (Pk’ cannot 

coincide since this leads to the maximal operator already considered in Sect. 2.6.1. 

Hence it follows that 5 (4~~ - q$k') = p -f- h - 2 and, hence Z = qh. 
2.7, An ordered set of coefficients a of polynomials of fixed degree s, being seg- 

ments of expansions of f (x), can be treated as coordinates of points of the Euclidean 
space R,. We assume that the order ratio for R, and Rs+k on a coinciding set of ele- 
ments is the same. The infinite-dimensional linear space lil of all coefficients can be 

considered as the inductive limit of the sequence A,, Rs, . . . . 
The group G of all analytic transformations of a neighborhood of point X = 0, leav- 

ing this point in place and preserving the linear part of system (1. l), induces a group of 
transformations G’ in R : G’ i< I$ --+ R. The spaces R are invariant relative to the 

transformations from G', while the collection of transformations from 6' acting non- 
identically in R forms a Lie group Gsr. Let 

be operators corresponding to one-parameter subgroups of groups G and G x G’. The 
condition for the invariance of system (1.1) relative to the transformations from group 
G x G' yields IL, Z*I = 0, or equivalently 

Equality (2.6) is fulfilled identically with-respect to 2 and serves for the computation 
of the elements cki (a) of the vector matrix ( cki) of the algebra corresponding to 
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group G’. This matrix has a block-triangular structure. If operator 2 is maximal, then 
in addition, all elements of its rows belonging to f = q (p - p) nonzero blocks, vanish. 

Here it is impossible to increase this number with any linear combination of operator Z 
with higher-order operators. The number p3 of invariant sets generated by group G’ in 
space R, is determined by the number of zero rows in the corresponding matrix ( &r3)s, 

i. e. by the number of maximal operators 2~~) for which simultaneously 

QP + 1 >s7 qcL+l\(s (2.V 

If system (1.1) is written in normal form from the very start, then s = qs* + 1, 
s*=O,l,... . Setting 2*= p - z, we write inequalities (2.7) as 

s* - z” < ll < SE (2.8) 

Let ri, r2, ra be the number of zero rows generated in the matrix ( [ki)8 by the opera- 
tors for which r* = m, h, 2h - m , respectively. From inequalities (2.8) with due 
regard to the preceding results, we obtain 

ri = m (s* > m) r = 

rz = (n - 2) h (s* > h) ’ ( 

2h- rn, (2h - m \<s* <2h) 

2h - m + 1 (s* > 2h) 

In the computation of r3 we have taken into account that although p > S* - r* > 

2h - (2h - m) = m, for s* > 2h , among the operators satisfying inequalities (2.8) 
we should include one more, namely, Ycm). The number of invariant sets is computed 
from the formula ps = ri f r, + ra - 1 (the similarity transformation, not taken 
into account above. decreases the number of invariant sets by unity). Hence psO = nh. 
From the formulas for ri we see that this number ceases to increase when s* > 2h. 
Consequently, sa = 2qh + 1. 

3. Example, We examine a fourth-order system in normal form with a degene- 
racy codimension h = 1 

Xi’ = Si (lzi + UiiU + Ui2ZL2 + .*.), i < 4 (3.1) 
u = xnl % i “‘54’ &nl + &n, + hat23 + a,n, = U 

According to the theorem in this paper, system (3.1) has four invariants depending on 
segments of the right-hand sides of order not higher than 2q + 1, i. e. on the coefficients 
all, . . ., ~42. Let us find these invariants. 

The components of the operators corresponding to one-parameter groups preserving 
the normal form of Eqs. (3.1) have the form (only the transformations affecting coeffi- 
cients all, ..,, Q) are considered) 

4i = aiziu 
From the defining equations 

eiZi 5 (Uij + TtlUlj + . . . + n,Unj) “‘+l = ‘ix+ joUijujtl + 

j=o 

xi 21 ju..uiml 
23 

(xn1$-. . . + 'nn,) + zj_ 2 Sjj (') 'Lj 

j,o j 

we find 

&,j+l(U)= Ui (TZlUlj + . + ?l*(2nj)-_Uij(Cilnl +-.. + U,n,), i=@, 1, 
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Hence, if we do not take the similarity transformation (a, = . . . = a, = I), into ac- 
count, by the use of known standard procedures we find the following invariants : 

ail = Inv, i = 1, 2, 3, 4 (3.2) 

01 [n3 (q * - a314) + 124 kJ * - a4lq)l - a)2 InI (4 * - aIs) + *? (q * - 

a,d)l = Inv 

(oh = w12 + wzzr. a2 = n3*32 _t n4aJ2, q * = mai1 + . . . + WQd 

Thus, for h = 1 and for one resonance relation (1.2), any analytic system of the fourth 
order can be reduced by a formal transformation to the form 

Xi = Si (hi + UiiU + Q(,U’) 

where aii are fixed, while aiz are related by the single condition (3.2). 

1. 

2. 

3. 
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5. 

6. 
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We prove some theorems on the stability of motions of conservative mechanical 
systems under continually-acting perturbations, subject to specified constraints. 

In the investigation of stability of such type it is usually assumed only that the 
continually-acting perturbations are small [l]. Such a formulation omits from 
consideration an important class of conservative systems whose motions do not 
possess asymptotic stability because an integral invariant exists in them. HOW- 
ever, in many problems concerning the structure of the continually-acting per- 
turbations, certain information is available enabling us to estimate their influence 


